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University of California, Berkeley
Physics 110A Spring 2003 Section 2 (Strovink)

SOLUTION TO MIDTERM EXAMINATION I

Directions: Do all three problems, which have unequal weight. This is a closed-book closed-note
exam except for one 81

2 × 11 inch sheet containing any information you wish on both sides. A pho-
tocopy of the four inside covers of Griffiths is included with the exam. Calculators are not needed,
but you may use one if you wish. Laptops and palmtops should be turned off. Use a bluebook. Do
not use scratch paper – otherwise you risk losing part credit. Show all your work. Cross out rather
than erase any work that you wish the grader to ignore. Justify what you do. Express your answer
in terms of the quantities specified in the problem. Box or circle your answer.

Problem 1. (35 points)
A volume charge density ρ(�r) has the value over
all space

ρ(�r) = σ0δ(s − b) ,

where σ0 and b are positive constants, and s is
the usual cylindrical coordinate (the perpendic-
ular distance from the z axis). (Remember that
the usual integral formula for getting V from ρ
can be used only if ρ = 0 at infinity!)

(a) (5 points) What are the dimensions of σ0?
Solution:
Since δ(s − b) has dimensions m−1 (over s it in-
tegrates to unity), and ρ has dimensions C/m3,
σ0 has dimensions C/m2 – it is a surface charge
density.

(b) (15 points) Find the electric field �E(�r) at
any space point �r = (s, φ, z).
Solution:
The charge giving rise to �E is distributed in an
infinite cylindrical shell of radius b centered on
the z axis. Because of the cylindrical symme-
try and z-independence we know that �E must
point along ŝ and be independent of φ or z. As
a Gaussian surface we choose a cylindrical can
of radius s and length L, also centered on the z
axis. Applying Gauss’s Law,

∮∮
ε0 �E · d�a = Q

2πsLε0Es = 2πbLσ0 (s > b)
= 0 (s ≤ b)

ε0 �E = ŝ σ0
b

s
(s > b)

= 0 (s ≤ b) .

(c) (10 points) Find the potential difference

∆V ≡ V (b, 0, 0)− V (0, 0,∞) ,

where, as above, the parentheses refer to (s, φ, z).
Solution:
Both sets of coordinates lie within the field-free
region s ≤ b, so ∆V = 0.

Problem 2. (35 points)
The potential energy of mutual electrostatic in-
teraction between two ideal electric dipoles �p1

and �p2 is

4πε0U12 = −p1p2
3(r̂ · p̂1)(r̂ · p̂2)− p̂1 · p̂2

r3
,

where �r is their mutual separation. Consider a
single ideal dipole with electric dipole moment
equal in magnitude to p. The dipole is a dis-
tance z above an infinite grounded conducting
plane z = 0.

(a) (10 points) Assume for this part that the
dipole is allowed to rotate so that it may point
in any direction. Does it tend to point perpen-
dicular to the plane (i.e. along ẑ), or parallel to
the plane? Your answer should be justified by
either a quantitative or a qualitative argument.
Solution:
The true and mirror dipoles are always sepa-
rated such that r̂ = ẑ (the sign of r̂ doesn’t
matter). Suppose the true dipole �p1 is oriented
vertically (p̂1 = ẑ). Consider the mirror dipole.
The vector �d from the negative to the positive
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mirror charge points in the same absolute di-
rection as �p1. Therefore, for this orientation of
p̂1, the mirror dipole moment is the same as the
true dipole moment: �p2 = +�p1. Then

4πε0(2z)3U12

p1p2
= −(3− 1) = −2 .

Suppose instead that the true dipole p1 is ori-
ented horizontally (p̂1 = (say) x̂). Then the
mirror dipole moment is opposite to the true
dipole moment, and

4πε0(2z)3U12

p1p2
= −(0− (−1)) = −1 .

In the first case U12 is more negative, so the
dipole tends to be oriented perpendicular to the
plane.

(b) (10 points) Assume instead that the dipole’s
direction is fixed so that it points perpendicu-
lar to the plane. Is the plane attracted to or
repelled from the dipole? Again your answer
should be justified by either a quantitative or a
qualitative argument.
Solution:
From part (a), regardless of dipole orientation,
U12 becomes more negative as z diminishes.
Therefore the true dipole is attracted downward
to the conducting plane, and correspondingly
the conducting plane is attracted upward to the
true dipole.

(c) (15 points) For the conditions of part (b),
calculate the magnitude of this attractive or re-
pulsive force.
Solution:
U12 is the electrostatic field energy associated
with the interaction of two real dipoles. Here
only the electrostatic field energy above the
grounded plane – half of the total electrostatic
field energy represented by U12 – is real. There-
fore the attractive force is only half the negative
gradient of U12: on the true dipole

Fz = − 1
2

dU12

dz

= − 1
2

d

dz
(−2) p2

4πε0(2z)3

= − 3p2

32πε0z4
.

[Very substantial part credit is awarded for twice
the correct answer.]

Problem 3. (30 points)
A conducting sphere of radius b, centered at
the origin, is surrounded by a spherical insu-
lating layer of material with dielectric constant
εr ≡ ε/ε0, extending from b < r < 2b. The con-
ductor has a spherical hole of radius b/4 centered
at (x, y, z) = (0, 0, b/4). At the center of the hole
is a charge q. There is no other net charge on
any material. Take θ to be the usual spherical
polar angle between ẑ and r̂.

(a) (10 points) Find the free charge density σf (θ)
on the outside surface of the conducting sphere.
Solution:
Statically there can be no electric field inside the
bulk conducting material of which the sphere is
composed. Consider a spherical surface centered
on the hole, a small distance inside the bulk ma-
terial that bounds the hole. Applying Gauss’s
law to this surface, it must contain no charge.
Therefore a charge −q must be distributed on
the inside surface of the hole. Because the
sphere has no net charge, a cancelling charge +q
must therefore be distributed on its outside sur-
face. Because the sphere’s outside surface is an
equipotential, the electric field outside it must
also be spherically symmetric; thus the can-
celling charge +q must be distributed uniformly
over this surface. Therefore

σf =
q

4πb2
.

(b) (20 points) Find the potential V (θ) at r = b,
assuming that V = 0 at r = ∞.
Solution:
Consider a spherical surface outside the conduc-
tor, centered at the origin. Taking advantage of
the spherical symmetry of the fields outside the
conductor, and applying Gauss’s law for �D, one
obtains

4π �D = r̂
q

r2
.

Then, using the linearity of the dielectric,

4πε0 �E = r̂
q

r2
(2b < r)

= r̂
q

εrr2
(b < r ≤ 2b) .
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Integrating,

4πε0
(
V (b)− V (∞)

)
= −4πε0

∫ b

∞
�E · d�l

= 4πε0

∫ ∞

b

Er dr

=
∫ 2b

b

q

εrr2
dr +

∫ ∞

2b

q

r2
dr

=
q

εrb
− q

2εrb
+

q

2b

=
q

2b
(
1 +

1
εr

)
.


